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Stereoselective Bromination of §-Ribofuranosyl Amide.
Enantioselective Synthesis of (+)-Hydantocidin
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Summary. The synthesis of hydantocidin, a potent herbicidal natural product, is highlighted by a stereoselective
bromination of $-D-ribofuranosyl amide to give only the a-bromo 3-amide and subsequent spirocyclization about
the anomeric position with silver cyanate to form the hydantoin moiety.

Hydantocidin (1) is a potent non-selective herbicidal natural product produced from Streptomyces
hygroscopicus which was isolated by fermentation from a soil sample collected in Japan.! The unusual structure
containing a hydantoin ring spiro-annulated at the anomeric position of B-D-ribofuranose as well as the potential
commercial utility2 of 1 prompted us to develop a total synthesis. Although 1 has been prepared previously, none of
these approaches are economically feasible in terms of overall yield, the number of required synthetic transfor-
mations, or stereochemical selectivity.3 Unlike the prior routes, we chose to begin with an intact ribofuranose where
the C-2, C-3, and C-4 positions possess the required configuration and the anomeric C-1 position can potentially be
stereochemically controlled. In particular, we envisioned that the a-bromide 3 would be an ideal intermediate to
react with silver cyanate in order to form the desired spirocycle. Reported herein is the successful application of this
approach for the preparation of (+)-hydantocidin (1).
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Hydration of the readily available 2,3,5-tri-O-benzoyl-B-D-ribofuranosyl cyanide* with manganese(IV)
oxide-CH2Cl; was an efficient protocol® for preparing the B-amide 2 in 95% yield (41% recovered nitrile).
Extended reaction times led to an increased yield of 2 (82%, 12 d) but lower recovery of the starting nitrile. Freo
radical brominationS by refluxing a mixture of 2 and NBS with benzoyl peroxide initiation in carbon tetrachloride
led to the formation of 3 (51% yield) as a single stereoisomer tentatively assigned as the ct-bromo-B-amide
depicted.” Confirmation of this structural assignment was based on the following experiments. Treatment of 3 with
tributyltin hydride and 2,2'-azobis(2-methyl-propionitrile) initiation8 furnished the B-amide 2 as well as a minor
amount of the anti-elimination product (7, see below). Furthermore, a positive heteronuclear nOe was observed
between the B-CONH3 and the upfield H-5. These results strongly suggest that the anomeric radical of ribo-
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furanosyl amide is attacked at the a-position with retention of configuration, an observation consistent with glucosyl
radicals.® Precedent for such an observation is provided by Ferrier who has pioneered photobromination1? on the
related six-membered cyclic glycuronic acid derivatives which preferentially take place to give o-adducts at C-5.11
This represents the first known example of stereoselective intermolecular anomeric radical trapping from the alpha
face of a ribofuranose system. While pyranosyl radicals are well documented to give a high diastereoselectivity for
axial bond formation, 12 furanosyl radicals have previously been shown to provide anomeric mixtures.13
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Spirocyclization of 3 was effected with freshly prepared silver cyanatel4 (4 equiv) at 80 °C in anhydrous
nitromethane.15 A 2:1 mixture of bicycles 4 and § were obtained, respectively, in 46% yield. The mixture was
separated by careful flash column chromatography and the minor isomer 5 subjected to camphorsulfonic acid (0.05
N in methanol, 1 equiv) at 70 °C which established a 6:1 equilibrium mixture of 4 and 5, presumably facilitated by
anchimeric assistance of the 2a-benzoate group, accompanied by a minor amount (<10%) of C-5 saponification, 16
In this way an overall yield of 44% of 4 from 3 was obtained. Interestingly, two unavoidable by-products were
isolated from the formation of both 3 and 4, namely, the corresponding hydroxyamide 6 and unsaturated amide 7
which reflects the lability of the anomeric bromide. It was also found that treatment of 1-bromo-D-furanosyl cyanide
8 (prepared in 73% yield as described in ref. 7) with silver cyanate cleanly formed the ribonolactone 9 which was
conﬁrmed by independent synthcsis Similar observations to thesc from the reaction of l-bromo-D-glycosyl
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cyanides with mercuric acetate have been reported.17 Deprotection of pure 4 with lithium peroxide18 (5 equiv) in
tetrahydrofuran-water (5:1) at 0 °C produced a 90% yield of 1.19 (+)-Hydantocidin (1) thus obtained was identical
in all respects to the natural product as shown by 1H NMR, 13C NMR, uncorrected mp 178-180 °C (lit.12 mp 187-
189 °C), and [c]f5 +28.5° (lit. 18 []§5 +28.8°).20

We have described a simple and efficient five step synthesis of (+)-hydantocidin (1) in 19% overail yield
(based on unrecovered starting material) from commercially available reagents (the overall yield is 17% with no
recovery of starting nitrile 2).21:22 During these studies it was found that B-ribofuranosyl amide is stereoselectively
brominated with retention of configuration (2—3). This finding has implications for a variety of glycosidation
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reactions and further experiments with other ribofuranoses bearing large anomeric groups, particularly C-
nucleosides, are in progress. The mechanism of action of 1 has yet to be determined and on-going enzymology
studies may lead to the identification of a novel herbicidal target site. We also believe that this methodology should
be applicable to carbohydrate based derivatives of hydantocidin with expected herbicidal activity. This proposal is
currently being tested.
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